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Abstract The commonly used periodic patterning for

quasi phase-matching plane-waves is theoretically ade-

quate for completely depleting and transferring a funda-

mental wave to its second harmonic. However, when

working with Gaussian beams the conversion efficiency of

such a design lacks due to the inherent Gouy phase shift

and the spatially varying beam profile, yielding roughly

88 % conversion efficiency. In this paper, we study the

possibility of adding a linear chirp and Gouy-phase shift

compensation to the periodic poling. We demonstrate that

this poling pattern enables us to achieve near-optimal fre-

quency doubling efficiency of up to 97 %.

1 Introduction

When designing a periodically poled crystal to frequency-

double an input fundamental plane-wave, the period can

simply be deduced from the quasi phase-matching (QPM)

condition. This method allows one to theoretically achieve

the optimal efficiency, fully converting the fundamental

wave to its second harmonic (SH). Efficient generation of

higher harmonics of a plane-wave pump is also possible

using a numerical optimization algorithm [1]. Considering

the practical case of a Gaussian beam, however, a periodic

design will not yield perfect conversion. The inherent Gouy

phase creates an additional phase factor, dependent on the

longitudinal coordinate, which is not compensated for by

the periodic design. Previous studies have dealt with the

Gouy phase-shift [2, 3], and the inherent Gaussian wave

phase mismatch has been discussed, but these studies did

not take pump depletion into account. In addition, since the

conversion efficiency curve varies with intensity, the

Gaussian intensity profile will not convert equally, and

partial back-conversion may occur. Boyd and Kleinman [4]

have addressed this issue, but only in the undepleted pump

approximation. It was shown that for the case of third

harmonic generation of a Gaussian fundamental beam,

near-optimal efficiency is possible [5], but an optimal

pattern for frequency doubling of a Gaussian beam has not

been found yet. In this article we propose a design that

compensates for the Gouy phase-shift and the Gaussian

profile and show that such a design can convert 97 % of the

energy of a fundamental Gaussian beam into the SH wave.

The article is arranged as follows: in Sect. 2 we describe

the phase-mismatch due to the Gaussian nature of the beam

and theoretically derive appropriate corrections. In Sect. 3,

we analyze the proposed corrections in a numerical simu-

lation. In Sect. 4, experimental results are provided and

compared to theory. We summarize in Sect. 5.

2 Deriving the phase-mismatch correction term

We define the complex amplitude of the Gaussian field as

follows [6]:

Eðr; zÞ ¼ AðzÞ
1þ if

e�r2=x2
0
ð1þifÞ ð1Þ

where A(z) is the field amplitude, r the spatial profile

coordinate, x0 the beam waist and f is a dimensionless

longitudinal coordinate defined in terms of the confocal

parameter b
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f ¼ 2z=b ¼ 2z=kx2
0 ð2Þ

The Gaussian phase is comprised of two factors: the

Gouy phase shift atan(f) due to the factor in the

denominator, 1 ? if, and an additional phase factor in

the transverse direction, of the form �r2 � f/(1 ? f2), that

arises from the spatial nature of the Gaussian beam. The

total phase therefore consists of these two factors and the

spatial harmonic phase, exp(ikz).

Applying QPM, we suggest compensating the phase-

mismatch by modulating the effective nonlinear coefficient

in the following general form:

dðzÞ ¼ deff � signf cos½bðzÞ � atanðfÞ�g ð3Þ

where atan(f) compensates for the Gouy phase shift and

b(z) corrects the spatial profile along the propagation

length. We expand bðzÞ ¼ b0 þ b1 � zþ b2 � z2 þ � � �: b0 is

a constant phase factor and may be ignored; b1 � z is the-

oretically optimized as Dk � z, where Dk = k2x - 2 kx is

the phase mismatch between the interacting waves. Boyd

and Kleinman [4] showed that the optimal phase mismatch

for a Gaussian beam depends on the focusing parameter l/b

where l is the optical length and b is the confocal parameter

and in general is not zero, so one may argue that a slightly

different value is required for b1. However, the derivation

in [4] assumed that the pump is not depleted and that the

phase-matching pattern is not a function of the longitudinal

coordinate. By numerical simulations, we found that even

when the pump is strongly depleted, the optimal choice for

b1 is Dk.

The quadratic term b2 � z2 provides a linear chirp to the

period. Chirped patterns have previously been demon-

strated to show beneficial qualities in sum-frequency con-

version [7]. In our case, this term contributes another

degree of freedom for compensating the spatial beam

variations as it propagates. It is therefore concluded that for

second order polynomial expansion of b(z), the poling

pattern is dependent only on one parameter, b2:

dðzÞ ¼ deff � signfcos½Dk � zþ b2 � z2 � atanðfÞ�g ð4Þ

In order to investigate the effect of the correction

parameter b2 for compensating the transverse Gaussian

phase factor, we define the local phase-mismatch function

f(r, z), which is the difference between the correction
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Fig. 1 Qualitative depiction |f(r, z)|, indicating local phase-mismatch,

in normalized units, of the angular spread of k-vectors in a focused

Gaussian beam as it propagates in a periodic (a), negative (b) and

positive (c) b2 design. Darker areas (blue) are where the phase-

mismatch is minimal. (d) Example of phase-matching if b2 is chosen

too large, or if the Gaussian wave is replaced with a plane-wave
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parameter and the Gaussian phase factor, f(r, z) = ±(r2/

x0,eq
2 ) � f/(1 ? f2) ? b2 � z2. x0,eq

2 = x0,1
2 � x0,2

2 /(x0,1
2 -

2x0,2
2 ) is a constant, which results when substituting

Eq. (1) as the interacting field in the SH coupled-wave

equations [6], where x0,1
2 , x0,2

2 are the fundamental and SH

beam waists, respectively. Figure 1 qualitatively illustrates

|f(r, z)| for several values of b2, specifically zero and

optimized negative and positive values—we have

numerically found that two distinct peak efficiencies exist

depending on the sign of b2. Note that minimal phase-

mismatch is obtained where f(r, z) ? 0 (darkest blue in the

figure).

Figure 1a is a periodic design, b2 = 0, and as the beam

focuses (z = 0) all k-vectors are parallel and thus are

efficiently phase-matched. Away from the focus, only

k-vectors parallel to the propagation axis (r = 0) have the

least phase-mismatch. In Fig. 1b, b2 is negative and small;

it is noticeable that the diagram is similar to the periodic

case but slightly asymmetric: at z � 0, k-vectors with a

larger angle to the propagation axis are more efficiently

phase-matched and this slight difference will later be

shown to have a strong impact on conversion efficiency. In

Fig. 1c b2 is positive and relatively large; in this design, up

until the focal point where the bulk of the conversion is

done, we observe a gradual improvement in the phase-

matching efficiency, and beyond it only specific k-vectors

with large transverse components are efficiently phase-

matched. The optimal positive b2 would be one that phase-

matches most k-vectors around the center of the crystal

(z = 0), and allow a longer interaction length for those that

propagate off-axis (r = 0), and thus diffract strongly.

Figure 1d shows, as reference, an example of a plane-wave

or alternatively a large, non-optimal choice of b2 (where

the most efficient conversion is around z = 0, so the effect

of b2 is weak).

We finish describing the effect of b2 � z2 by recalling

that the beam intensity has a Gaussian profile and that the

nonlinear process is quadratically dependent on the local

fundamental amplitude. We would like to design a poling

pattern that compensates for this by allowing a propor-

tionally longer interaction length for the lower-intensity

tails of the Gaussian, and a shorter interaction length for

the central, intensity-wise powerful peak; it is possible to

distinguish in QPM between the tails and the central peak

because any part of the beam, which is off-axis and far

from the beam waist has an angular spread of k-vectors, to

which we can design appropriate QPM patterns. Observing

Fig. 1b and c, our choice has done just that; as the beam

propagates, selected k-vectors are depleted (they convert to

the SH), and so a continuous change in the phase-matching

condition allows us to phase-match different k-vectors and

give more weight to the ones farther from the theoretical

plane-wave phase-matching condition.

3 Numerical simulations

In this section, based on chosen material and equipment

parameters, we separately find positive and negative opti-

mal (highest efficiency) values for b2. We then present

simulations with the waists giving peak efficiency as a

function of propagation length, input power and tempera-

ture. We conclude by discussing the results.

Using the split-step Fourier method [8], we have chosen

to simulate a KTP crystal at 100 �C and an input Gaussian

wave of wavelength 1,064.5 nm and 2 kW peak power,

representing a continuous-wave or flat-top pulse. For the

positive b2 we have chosen a crystal of length 25 mm, and

for the negative b2 a length of 12.5 mm. We then scanned

over a wide range of beam waists, from 10 to 150 lm (see

Fig. 2), and chose the most efficient. The algorithm

designed to find b2 is based on the golden section search

method [9]. We chose a longitudinal step resolution of

0.1 lm. The simulation was conducted over a transverse
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Fig. 2 Beam waist tuning for optimal efficiency. a Line (red) and

dashed (blue)—positive b2 = 793.16 m-2 and corresponding peri-

odic pattern; crystal length is 18.54 mm. b Line (red) and dashed

(blue)—negative b2 = -11.3 m-2 and corresponding periodic pat-

tern; crystal length is 10.85 mm
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area, which was about five times larger than the input beam

radius in each one of the two transverse coordinates. Each

cell’s dimension in the simulation matrix is one-tenth the

beam waist; these parameters were found to give a negli-

gible amount of numerical errors.

The peak efficiency is not necessarily reached at the

crystal’s end facet, thus we truncate the crystal appropri-

ately to avoid back-conversion. For positive and negative

b2, the optimal waist is 34 lm at b2 = 793.16 m-2 and

16 lm at b2 = -11.3 m-2 (yielding an intensity of 110

and 500 MW/cm2), respectively. The b2 tuning curves for

these waists are shown in Fig. 3. It is observed that the

positive b2 tuning curve is much broader than the negative

b2 one; around the peak value, the positive b2 may vary as

much as 120 m-2 for a change of 1 % in efficiency, while

variation as little as 0.105 m-2 incurs 1 % efficiency

change for the negative b2. For comparison, in the case of

the periodic pattern we chose optimal beam waists of 60

and 90 lm, for crystal lengths of 10.85 and 18.54 mm,

respectively. Results as a function of propagation length

are depicted in Fig. 4a and b.

It is evident from the simulations that both the positive

and negative b2 designs provide higher conversion effi-

ciency with respect to the periodic pattern. In case of

positive (negative) b2 the higher conversion efficiency is

96.9 (97.1) % as opposed to a conversion efficiency of 88.3

(85.1) % in the periodic pattern, thereby representing an

improvement of 8.6 (12) % in conversion efficiency.

The dependence of the conversion efficiency and tem-

perature acceptance on the input power is shown in Fig. 5.

The positive b2 results in a weaker conversion efficiency

for lower input powers but reaches higher efficiencies

otherwise in Fig. 5a. The negative b2 shows a distinct

improvement over the corresponding periodic pattern in

Fig. 5c. The temperature acceptances, shown in Fig. 5a and

d, are broadest for the positive b2 design, which allows for
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Fig. 3 Tuning curves for positive (a) and negative (b) b2. a A positive value of b2 = 793.16 m-2 is found for x0 = 34 lm and crystal length of

25 mm. b A negative value of b2 = -11.3 m-2 is found for x0 = 16 lm and crystal length of 12.5 mm
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Fig. 4 a SH propagation plots for positive b2 = 793.16 m-2 and the

corresponding periodic pattern with waist 34 and 90 lm, respectively.

Crystal length is 18.54 mm. b SH propagation plots of negative

b2 = -11.3 m-2 and the corresponding periodic pattern with waist

16 and 60 lm, respectively. Crystal length is 10.85 mm

576 R. Shiloh, A. Arie

123



good conversion efficiency in temperature-wise unstable

environments.

The conversion efficiency curves can serve as a basis

for predicting the conversion efficiencies of long pulses

other than flat-top, for example, Gaussian pulses, or for

pulse shaping applications. This interpretation may be

explained mathematically by first finding the function

Pout = g(Pin) that describes the conversion curve (for

example, the red curve in Fig. 5c multiplied by Pin); for

each input power Pin, the conversion efficiency is given by

g/Pin. Therefore, for an arbitrary input pulse, the total

conversion efficiency g is deduced from the relation

g ¼
R

gðPinðsÞÞds
�R

PinðsÞds. Table 1 summarizes results

for flat-top (or quasi-monochromatic) and Gaussian pulses

sharing the same peak power of 2 kW.

4 Experimental results and conclusions

We used the electric field poling technique in order to

modulate the nonlinear coefficient of a KTP crystal. The

accepted damage threshold for KTP is about 500 MW/cm2

for 10 ns pulses (http://www.as.northropgrumman.com/

products/synoptics_ktp/assets/ktp.pdf), and to avoid it we

decided to design our experiment for a 25 lm beam waist

for which, assuming peak power of 2 kW, the intensity is

roughly 200 MW/cm2. We manufactured three different

designs: having positive b2, negative b2 and a periodic

pattern for comparison, each of which with an underlying

phase-matching period of 8.85 lm. The quasi-monochro-

matic, 5 ns-pulsed laser outputted a Gaussian beam cen-

tered at 1.064 lm at a repetition rate of 10 kHz and peak

power of 2 kW. As in Sect. 3, after finding the optimal

b2 values for the chosen beam waist, the designs were

truncated at the correct length for optimal conversion

efficiency. The expected and measured temperature

acceptances are summarized in Table 2, along with the

Table 1 Summary of pulse-conversion efficiencies

Design Optimal

waist

(lm)

Crystal

length

(mm)

Flat-top

pulse

efficiency

(%)

Gaussian

pulse

efficiency

(%)

Numerical

value of

b2 (m-2)

Positive b2 34 18.54 96.9 82.2 793.16

Periodic 90 18.54 88.3 81.6 –

Negative b2 16 10.85 97.1 93.1 -11.3

Periodic 60 10.85 85.1 77.6 –
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Fig. 5 a, c Conversion efficiency curves for positive b2 and negative b2, and their corresponding periodic patterns, respectively. b, d The related

temperature acceptance curves
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optimal values of b2. The measured temperature accep-

tance is depicted in Fig. 6. We have made several attempts

at measuring the different designs, but the results, aside

from the temperature acceptance of the positive b2 design,

which agrees well with theory, were unsatisfactory. The

setup included a spatial filtering section consisting of two

pinholes and lens in a telescope formation to achieve beam

quality M2 = 1 ± 0.1 and a 50–50 beam-splitter with two

photodiode detectors to measure the crystal input and

output simultaneously.

It is observed that we could not exactly follow the sim-

ulated temperature acceptance, the experimental curves

smoother in comparison to the simulated ones. Our

measurements were strongly affected by the laser’s output

power, which showed strong fluctuations over short periods

of time, sometimes damaging the crystal. The temperature

gradient in the crystal and the instability and inaccuracy of

the oven further hampered our attempts. Lastly, each pulse

varied greatly in amplitude and slightly in form, compli-

cating the treatment of the results. We believe that for these

reasons we could not achieve our theoretical goals, and the

efficiency measurements were not accurate enough. It is

worth mentioning that the expected sinc function [6] for the

temperature acceptance of a periodic pattern is not observed

in the simulation since we are employing a focused Gaussian

beam rather than an undepleted-pump plane-wave.

5 Summary

In this article, we suggested a method tailored to phase-

match a Gaussian beam with a 1D pattern. The method

offers a theoretical improvement of up to 12 % for flat-top

pulses at 2 kW and up to 15.5 % for Gaussian pulses, over

the plane-wave periodic pattern solution. We have run

numerical simulations on KTP and considered practical

Table 2 Summary of expected efficiencies for 25 lm waist

Design Channel

length

(mm)

Flat-top

pulse

efficiency

(%)

Gaussian

pulse

efficiency

(%)

Numerical

value of b2

(m-2)

Positive b2 16.78 95.2 82.5 745.84

Negative b2 11.16 91.9 87.0 -37.01

Periodic 10.10 84.2 77.2 –
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aspects such as beam intensity and temperature acceptance.

We fabricated a crystal with the different designs. Mea-

surements have shown that the temperature acceptance of

the crystals fit well the theoretical predictions. Conversion

efficiency measurements were also performed but the cal-

culated improvement could not be observed clearly due to

non-ideal measuring conditions. The method may be

applied to other nonlinear optics crystals by finding the

chirp parameter b2, which brings the conversion efficiency

to a maximum.
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